skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Kunhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper introduces the concept of leakage-robust Bayesian persuasion. Situated between public Bayesian persuasion and private Bayesian persuasion, leakage-robust persuasion considers a setting where one or more signals privately communicated by a sender to the receivers may be leaked. We study the design of leakage-robust Bayesian persuasion schemes and quantify the price of robustness using two formalisms: - The first notion, k-worst-case persuasiveness, requires a signaling scheme to remain persuasive as long as each receiver observes no more than k leaked signals from other receivers. We quantify the Price of Robust Persuasiveness (PoRPk)— i.e., the gap in sender's utility as compared to the optimal private persuasion scheme—as Θ(min{2k,n}) for supermodular sender utilities and Θ(k) for submodular or XOS sender utilities, where n is the number of receivers. This result also establishes that in some instances, Θ(log k) leakages are sufficient for the utility of the optimal leakage-robust persuasion to degenerate to that of public persuasion. - The second notion, expected downstream utility robustness, relaxes the persuasiveness requirement and instead considers the impact on sender's utility resulting from receivers best responding to their observations. By quantifying the Price of Robust Downstream Utility (PoRU) as the gap between the sender's expected utility over the randomness in the leakage pattern as compared to private persuasion, our results show that, over several natural and structured distributions of leakage patterns, PoRU improves PoRP to Θ(k) or even Θ(1), where k is the maximum number of leaked signals observable to each receiver across leakage patterns in the distribution. En route to these results, we show that subsampling and masking serve as general-purpose algorithmic paradigms for transforming any private persuasion signaling scheme to one that is leakage-robust, with minmax optimal loss in sender's utility. A full version of this paper can be found at https://arxiv.org/abs/2411.16624. 
    more » « less
    Free, publicly-accessible full text available July 7, 2026
  2. Collaboration is crucial for reaching collective goals. However, its effectiveness is often undermined by the strategic behavior of individual agents -- a fact that is captured by a high Price of Stability (PoS) in recent literature [Blum et al., 2021]. Implicit in the traditional PoS analysis is the assumption that agents have full knowledge of how their tasks relate to one another. We offer a new perspective on bringing about efficient collaboration among strategic agents using information design. Inspired by the growing importance of collaboration in machine learning (such as platforms for collaborative federated learning and data cooperatives), we propose a framework where the platform has more information about how the agents' tasks relate to each other than the agents themselves. We characterize how and to what degree such platforms can leverage their information advantage to steer strategic agents toward efficient collaboration. Concretely, we consider collaboration networks where each node is a task type held by one agent, and each task benefits from contributions made in their inclusive neighborhood of tasks. This network structure is known to the agents and the platform, but only the platform knows each agent's real location -- from the agents' perspective, their location is determined by a random permutation. We employ private Bayesian persuasion and design two families of persuasive signaling schemes that the platform can use to ensure a small total workload when agents follow the signal. The first family aims to achieve the minmax optimal approximation ratio compared to the optimal collaboration, which is shown to be Θ(n‾√) for unit-weight graphs, Θ(n2/3) for graphs with constant minimum edge weights, and O(n3/4) for general weighted graphs. The second family ensures per-instance strict improvement compared to full information disclosure. 
    more » « less
  3. Collaboration is crucial for reaching collective goals. However, its effectiveness is often undermined by the strategic behavior of individual agents -- a fact that is captured by a high Price of Stability (PoS) in recent literature [Blum et al., 2021]. Implicit in the traditional PoS analysis is the assumption that agents have full knowledge of how their tasks relate to one another. We offer a new perspective on bringing about efficient collaboration among strategic agents using information design. Inspired by the growing importance of collaboration in machine learning (such as platforms for collaborative federated learning and data cooperatives), we propose a framework where the platform has more information about how the agents' tasks relate to each other than the agents themselves. We characterize how and to what degree such platforms can leverage their information advantage to steer strategic agents toward efficient collaboration. Concretely, we consider collaboration networks where each node is a task type held by one agent, and each task benefits from contributions made in their inclusive neighborhood of tasks. This network structure is known to the agents and the platform, but only the platform knows each agent's real location -- from the agents' perspective, their location is determined by a random permutation. We employ private Bayesian persuasion and design two families of persuasive signaling schemes that the platform can use to ensure a small total workload when agents follow the signal. The first family aims to achieve the minmax optimal approximation ratio compared to the optimal collaboration, which is shown to be Θ(n‾√) for unit-weight graphs, Θ(n2/3) for graphs with constant minimum edge weights, and O(n3/4) for general weighted graphs. The second family ensures per-instance strict improvement compared to full information disclosure. 
    more » « less
  4. Collaboration is crucial for reaching collective goals. However, its potential for effectiveness is often undermined by the strategic behavior of individual agents — a fact that is captured by a high Price of Stability (PoS) in recent literature [BHPS21]. Implicit in the traditional PoS analysis is the assumption that agents have full knowledge of how their tasks relate to one another. We offer a new perspective on bringing about efficient collaboration across strategic agents using information design. Inspired by the increasingly important role collaboration plays in machine learning (such as platforms for collaborative federated learning and data cooperatives), we propose a framework in which the platform possesses more information about how the agents’ tasks relate to each other than the agents themselves. Our results characterize how and to what degree such platforms can leverage their information advantage and steer strategic agents towards efficient collaboration. Concretely, we consider collaboration networks in which each node represents a task type held by one agent, and each task benefits from contributions made to the task itself and its neighboring tasks. This network structure is known to the agents and the platform. On the other hand, the real location of each agent in the network is known to the platform only — from the perspective of the agents, their location is determined by a uniformly random permutation. We employ the framework of private Bayesian persuasion and design two families of persuasive signaling schemes that the platform can use to guarantee a small total workload when agents follow the signal. The first family aims to achieve the minmax optimal approximation ratio compared to the total workload in the optimal collaboration, which is shown to be for unit-weight graphs, for graphs with edge weights lower bounded by Ω(1), and for general weighted graphs. The second family ensures per-instance strict improvement in the total workload compared to scenarios with full information disclosure. 
    more » « less
  5. We study calibration measures in a sequential prediction setup. In addition to rewarding accurate predictions (completeness) and penalizing incorrect ones (soundness), an important desideratum of calibration measures is truthfulness, a minimal condition for the forecaster not to be incentivized to exploit the system. Formally, a calibration measure is truthful if the forecaster (approximately) minimizes the expected penalty by predicting the conditional expectation of the next outcome, given the prior distribution of outcomes. We conduct a taxonomy of existing calibration measures. Perhaps surprisingly, all of them are far from being truthful. We introduce a new calibration measure termed the Subsampled Smooth Calibration Error (SSCE), which is complete and sound, and under which truthful prediction is optimal up to a constant multiplicative factor. In contrast, under existing calibration measures, there are simple distributions on which a polylogarithmic (or even zero) penalty is achievable, while truthful prediction leads to a polynomial penalty. 
    more » « less
  6. When learning in strategic environments, a key question is whether agents can overcome uncertainty about their preferences to achieve outcomes they could have achieved absent any uncertainty. Can they do this solely through interactions with each other? We focus this question on the ability of agents to attain the value of their Stackelberg optimal strategy and study the impact of information asymmetry. We study repeated interactions in fully strategic environments where players' actions are decided based on learning algorithms that take into account their observed histories and knowledge of the game. We study the pure Nash equilibria (PNE) of a meta-game where players choose these algorithms as their actions. We demonstrate that if one player has perfect knowledge about the game, then any initial informational gap persists. That is, while there is always a PNE in which the informed agent achieves her Stackelberg value, there is a game where no PNE of the meta-game allows the partially informed player to achieve her Stackelberg value. On the other hand, if both players start with some uncertainty about the game, the quality of information alone does not determine which agent can achieve her Stackelberg value. In this case, the concept of information asymmetry becomes nuanced and depends on the game's structure. Overall, our findings suggest that repeated strategic interactions alone cannot facilitate learning effectively enough to earn an uninformed player her Stackelberg value. 
    more » « less
  7. We study calibration measures in a sequential prediction setup. In addition to rewarding accurate predictions (completeness) and penalizing incorrect ones (soundness), an important desideratum of calibration measures is truthfulness, a minimal condition for the forecaster not to be incentivized to exploit the system. Formally, a calibration measure is truthful if the forecaster (approximately) minimizes the expected penalty by predicting the conditional expectation of the next outcome, given the prior distribution of outcomes. We conduct a taxonomy of existing calibration measures. Perhaps surprisingly, all of them are far from being truthful. We introduce a new calibration measure termed the Subsampled Smooth Calibration Error (SSCE), which is complete and sound, and under which truthful prediction is optimal up to a constant multiplicative factor. In contrast, under existing calibration measures, there are simple distributions on which a polylogarithmic (or even zero) penalty is achievable, while truthful prediction leads to a polynomial penalty. 
    more » « less
  8. When learning in strategic environments, a key question is whether agents can overcome uncertainty about their preferences to achieve outcomes they could have achieved absent any uncertainty. Can they do this solely through interactions with each other? We focus this question on the ability of agents to attain the value of their Stackelberg optimal strategy and study the impact of information asymmetry. We study repeated interactions in fully strategic environments where players' actions are decided based on learning algorithms that take into account their observed histories and knowledge of the game. We study the pure Nash equilibria (PNE) of a meta-game where players choose these algorithms as their actions. We demonstrate that if one player has perfect knowledge about the game, then any initial informational gap persists. That is, while there is always a PNE in which the informed agent achieves her Stackelberg value, there is a game where no PNE of the meta-game allows the partially informed player to achieve her Stackelberg value. On the other hand, if both players start with some uncertainty about the game, the quality of information alone does not determine which agent can achieve her Stackelberg value. In this case, the concept of information asymmetry becomes nuanced and depends on the game's structure. Overall, our findings suggest that repeated strategic interactions alone cannot facilitate learning effectively enough to earn an uninformed player her Stackelberg value. 
    more » « less
  9. In this paper, we introduce a generalization of the standard Stackelberg Games (SGs) framework: Calibrated Stackelberg Games. In CSGs, a principal repeatedly interacts with an agent who (contrary to standard SGs) does not have direct access to the principal's action but instead best responds to calibrated forecasts about it. CSG is a powerful modeling tool that goes beyond assuming that agents use ad hoc and highly specified algorithms for interacting in strategic settings to infer the principal's actions and thus more robustly addresses real-life applications that SGs were originally intended to capture. Along with CSGs, we also introduce a stronger notion of calibration, termed adaptive calibration, that provides fine-grained any-time calibration guarantees against adversarial sequences. We give a general approach for obtaining adaptive calibration algorithms and specialize them for finite CSGs. In our main technical result, we show that in CSGs, the principal can achieve utility that converges to the optimum Stackelberg value of the game both in finite and continuous settings and that no higher utility is achievable. Two prominent and immediate applications of our results are the settings of learning in Stackelberg Security Games and strategic classification, both against calibrated agents. 
    more » « less
  10. We study the problem of online binary classification where strategic agents can manipulate their observable features in predefined ways, modeled by a manipulation graph, in order to receive a positive classification. We show this setting differs in fundamental ways from classic (non-strategic) online classification. For instance, whereas in the non-strategic case, a mistake bound of ln |H| is achievable via the halving algorithm when the target function belongs to a known class H, we show that no deterministic algorithm can achieve a mistake bound o(Δ) in the strategic setting, where Δ is the maximum degree of the manipulation graph (even when |H| = O(Δ)). We complement this with a general algorithm achieving mistake bound O(Δ ln |H|). We also extend this to the agnostic setting, and show that this algorithm achieves a Δ multiplicative regret (mistake bound of O(Δ · OPT + Δ · ln |H|)), and that no deterministic algorithm can achieve o(Δ) multiplicative regret. Next, we study two randomized models based on whether the random choices are made before or after agents respond, and show they exhibit fundamental differences. In the first, fractional model, at each round the learner deterministically chooses a probability distribution over classifiers inducing expected values on each vertex (probabilities of being classified as positive), which the strategic agents respond to. We show that any learner in this model has to suffer linear regret. On the other hand, in the second randomized algorithms model, while the adversary who selects the next agent must respond to the learner's probability distribution over classifiers, the agent then responds to the actual hypothesis classifier drawn from this distribution. Surprisingly, we show this model is more advantageous to the learner, and we design randomized algorithms that achieve sublinear regret bounds against both oblivious and adaptive adversaries. 
    more » « less